A fluid-mixture type algorithm for barotropic two-fluid flow problems
نویسنده
چکیده
Our goal is to present a simple interface-capturing approach for barotropic two-fluid flow problems in more than one space dimension. We use the compressible Euler equations in isentropic form as a model system with the thermodynamic property of each fluid component characterized by the Tait equation of state. The algorithm uses a non-isentropic form of the Tait equation of state as a basis to the modeling of the numerically induced mixing between two different barotropic fluid components within a grid cell. Similar to our previous work for multicomponent problems, see [J. Comput. Phys. 171 (2001) 678] and references cited therein, we introduce a mixture type of the model system that consists of the full Euler equations for the basic conserved variables and an additional set of evolution equations for the problem-dependent material quantities and also the approximate location of the interfaces. A standard high-resolution method based on a wave-propagation formulation is employed to solve the proposed model system with the dimensional-splitting technique incorporated in the method for multidimensional problems. Several numerical results are presented in one, two, and three space dimensions that show the feasibility of the method as applied to a reasonable class of practical problems without introducing any spurious oscillations in the pressure near the smeared material interfaces. 2004 Elsevier Inc. All rights reserved. AMS: 65M06; 76L05; 76M20; 76T05
منابع مشابه
A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows
Discretizations of two-fluid flow problems in conservative formulation generally exhibit pressure oscillations. In this work we show that these pressure oscillations are induced by the loss of a pressure-invariance property under discretization, and we introduce a non-oscillatory conservative method for barotropic two-fluid flows. The conservative formulation renders the two-fluid flow problem ...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملPERFORMANCE MODEL AND ANALYSIS OF BLOOD FLOW IN SMALL VESSELS WITH MAGNETIC EFFECTS
In this paper consider a two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes with effects of magnetic. The analytical results obtained in the proposed model for effective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004